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Abstract

We present a scalable and efficient framework for the inference of spatially-varying parameters of contin-
uum materials from image observations of their deformations. Our goal is the nondestructive identification
of arbitrary damage, defects, anomalies and inclusions without knowledge of their morphology or strength.
Since these effects cannot be directly observed, we pose their identification as an inverse problem. Our
approach builds on integrated digital image correlation (IDIC, Besnard Hild, Roux, 2006), which poses
the image registration and material inference as a monolithic inverse problem, thereby enforcing physical
consistency of the image registration using the governing PDE. Existing work on IDIC has focused on low-
dimensional parameterizations of materials. In order to accommodate the inference of heterogeneous material
property fields that are formally infinite dimensional, we present ∞-IDIC, a general formulation of the PDE-
constrained coupled image registration and inversion posed directly in the function space setting. This leads
to several mathematical and algorithmic challenges arising from the ill-posedness and high dimensionality
of the inverse problem. To address ill-posedness, we consider various regularization schemes, namely H1(Ω)
and total variation for the inference of smooth and sharp features, respectively. To address the computa-
tional costs associated with the discretized problem, we use an efficient inexact-Newton CG framework for
solving the regularized inverse problem. In numerical experiments, we demonstrate the ability of ∞-IDIC
to characterize complex, spatially varying Lamé parameter fields of linear elastic and hyperelastic materials.
Our method exhibits (i) the ability to recover fine-scale and sharp material features, (ii) mesh-independent
convergence performance and hyperparameter selection, (iii) robustness to observational noise.

Keywords: Digital image correlation (DIC), inverse problems, nondestructive evaluation (NDE), material
identification, dimension independence.
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1. Introduction

We present a novel formulation of inverse problems for spatially-varying parameter fields of continuum
materials using images of their deformations. In particular, we simultaneously pose the inversion and the
image registration problems as a continuum limit in a function space setting. This formulation allows for
the derivation of scalable and efficient discretization dimension-independent algorithms for the inversion of
heterogeneous material properties such as Lamé parameters while maintaining sharpness of features in their
reconstruction, via the use of appropriate regularization methods. Our approach aims to address the imper-
ative to characterize materials with spatially-varying properties. In particular we seek the non-destructive
identification of arbitrary damage, defects, degradation, anomalies and inclusion without knowledge of their
morphology or strength. The need for such methods is laid out in the vision for Materials Testing 2.0
(MT2.0) [1, 2], which calls for a paradigm shift in material characterization within research laboratories,
particularly for materials like tissues, composites, welds, foams, etc., where full-field measurements should
be used to identify spatially varying properties [2].

Since heterogeneous material defects are not directly observable, their identification must be posed as
an inverse problem for arbitrary infinite-dimensional fields. In order to infer such infinite-dimensional fields,
a significant amount of informative observational data is required. Digital image correlation (DIC) derives
displacement data via statistical correlation in differences in speckle patterned images [3]. However since
these statistical algorithms do not obey the governing mechanical equilibrium equations, they may lead to
cascading errors in the inversion. Integrated DIC (IDIC) introduced by Besnard, Hild and Roux, overcame
this issue by constraining the displacements to themselves follow the governing equations of the deformation
process [4]. IDIC in its current formulation however inverts for material properties as homogeneous constants
and not heterogeneous spatial fields [5].

In this paper, we extend the formulation of IDIC to the function space setting, where we formulate
the image registration and heterogeneous material inference problem as one monolithically coupled inverse
problem. In this setting, we model the image data, and the material properties as infinite-dimensional
spatial fields alongside the state variable (e.g., strain). Since the material properties are now formally
infinite-dimensional fields, this leads to significant ill-posedness. In order to overcome this ill-posedness we
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consider various regularization models, such as L2(Ω), H1(Ω) Tikhonov regularization for smooth parameter
reconstruction, and (primal-dual) total variation (TV) for reconstruction of sharp features. These modeling
choices allow us to derive scalable and efficient Newton methods for the solution of these corresponding inverse
problems. We term the methods presented herein Infinite-Dimensional IDIC, abbreviated as ∞–IDIC.

We illustrate our approach through nondestructive evaluation problems for solids where one has obser-
vations of undeformed and deformed states of the material, which are painted speckle patterns.

In the numerical results we demonstrate ∞–IDIC considering linear elastic and neo-Hookean hyperelastic
models. We demonstrate that ∞–IDIC can recover spatially-varying material properties with remarkable
accuracy and sharpness; the corresponding stress fields can be post-processed for. This shows promise for
predicting failure mechanisms of stress concentrations that arise from spatially varying material properties.
Moreover, that our algorithms exhibit dimension-dependent convergence properties, and robustness to ob-
servational and loading noise. Our findings show that the information gained by the inversion depends on
the loading conditions, which can be exploited by incorporating multiple experiments in a single ∞–IDIC
inverse problem.

1.1. Related works

IDIC has been demonstrated using a wide range of PDEs such as phase-field fracture modeling [5],
elasto-plasticity [6–8], anisotropic linear elasticity [9], to name a few. The current research in IDIC focuses
on low-dimensional inversion, where the problem’s ill-posedness may not be as severe as in high-dimensional
spaces. However, often Tikhonov regularization is opted for or no regularization at all [7]. Rokos et al.
address low-dimensional parameter estimation limitations by using IDIC to infer a homogenized modulus
and then employing the principle of virtual work for heterogeneous behavior inference [10]. Such studies
underscore the necessity for a direct approach to handle IDIC in high-dimensional function spaces.

Unlike IDIC, which directly solves the inverse problem for material parameters, an alternative approach
involves using image registration DIC software to acquire a displacement field, subsequently treating it
as observational data. Initially devised to validate Finite Element Model (FEM) predictions against DIC
observations [11], a technique known as Finite Element Model Updating (FEMU), has evolved into the most
commonly used method for material parameter inference from DIC data [12–17]. It was shown that FEMU
and IDIC behave similarly in a simple experiment for inferring elasto-plastic parameters [6]. However, IDIC
outperforms FEMU in challenging inverse problems, such as those involving image noise, complex loading
conditions or experimental errors [18]. FEMU is useful when the DIC algorithm accurately captures the
displacement field, yet any error in DIC image registration can compromise the material inversion [19].

Existing IDIC works infer scalar, homogeneous material parameters, largely neglecting spatially varying
fields, specifically heterogeneous materials [1, 2]. There is limited work in FEMU that invert for spatially
varying material properties for one or two stiff inclusions in soft bodies for tumor identification (elastography)
[20–25]. The existing work is reliant on an initial DIC algorithm to provide accurate displacement fields and
do not appear to be mesh-independent. Scaling to high dimensional fields is a challenge we address in
this paper for inversion of complex material fields. Infinite dimensional inverse problems, where the input
parameters are inferred from noisy observations of the data, are inherently ill-posed [26, 27]. We solve this
using an inverse problem formulation that is familiar to a vast literature. For more information we refer the
reader to other works [26–30] for a more in depth treatment of the mathematical aspects of inverse problems.

1.2. Contributions

We present∞–IDIC, an image based parameter estimation inverse problem established in function spaces,
thereby enabling inversion of spatially varying material properties. We note that the formulation of ∞–IDIC
is general and applies across various materials like tissues, composites, welds, and foams, improving material
characterization through full-field measurements. Inferring detailed parameter and stress fields offers new
possibilities, a notable advancement for both FEM validation and non-destructive evaluation.

Our overall approach of simultaneously posing the image registration and heterogeneous material in-
ference problems can be extended to other fields such as in fluids (particle tracking velocimetry) [31–36],
rheometry (micro-rheometry) [37], medical (image registration) [38–43], robotics (point-set registration) [44–
48], and even more broadly for optical flow [49–51]. Figure 1 illustrates the key contributions of our work,
by highlighting the novelty of handling heterogeneous material properties, spatial modulus inference and
ultimately an accurate stress inference. The key contributions are summarized:
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physics-based

registration
heterogeneity

mesh

independence

FEMU (scalar) [6, 12–17] ✗ ✗ ✗

FEMU (field) [20–25] ✗ ✓ ✗

IDIC (scalar) [4–9] ✓ ✗ ✗

∞-IDIC (ours) ✓ ✓ ✓

Table 1. Summary of different DIC-based material property inverse methods.

1. Formulating ∞–IDIC in infinite-dimensional function spaces, enabling a dimension-independent algo-
rithm to infer spatially varying parameter fields.

2. Inverting for high-dimensional modulus fields captures heterogeneous material properties.

3. Post-processing for stress fields from the inferred modulus and displacement fields, enabling the iden-
tification of heterogeneity induced stress concentrations.

We handle the inherent ill-posedness of the formulated inverse problem via mesh-independent regular-
ization strategies, including L2(Ω), H1(Ω), primal-dual total variation that result in modeling benefits (e.g.,
sharpness, smoothing). This results in a regularized inverse problem which we choose to solve with an in-
exact Newton-CG method using a Gauss–Newton approximation of the Hessian. We demonstrate that the
inferred modulus and displacement fields can be used to predict stress fields, enabling the identification of
stress concentration-based failure mechanisms. In our numerical experiments, linear elastic and hyperelastic
material models are considered; these results showcase the robustness of ∞−IDIC to noise, mesh indepen-
dence, and boundary condition variations for complex material systems. We highlight our contributions
relative to existing works in Table 1, and illustrate the capabilities of ∞–IDIC in Figure 1.

Speckled Images

Spatial Modulus 
Inference

Stress 
Inference

Fig. 1. Our contributions include the development of an infinite-dimensional IDIC framework that enables the inversion
of spatially varying parameter fields engineered for heterogeneous materials. Novel contributions are highlighted: handling
heterogeneity, infinite dimensional framework, inference for high dimensional modulus fields, and stress fields.

1.3. Layout of the paper

The rest of the paper is divided into two overarching sections: formulation of ∞–IDIC and numerical
results. The formulation section begins with describing the infinite-dimensional inverse problem and its
ill-posedness. This is treated using regularization methods, including L2(Ω) Tikhonov regularization, H1(Ω)
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Tikhonov smoothing regularization, and total variation to favor sharp reconstructions. We then present
an inexact-Newton algorithm for solving the resulting PDE-constrained optimization problems, including
the computation of the gradient and (approximation) Hessian actions via adjoint methods. The numerical
results’ section showcases the performance of the algorithm in inferring high-dimensional modulus fields. The
results are presented for linear elasticity and hyperelasticity, demonstrating the robustness of the algorithm
to noise, mesh independence, and boundary condition variations. The paper concludes with a discussion on
the results and future work.

2. The ∞–IDIC Formulation

This section presents the formulation for ∞–IDIC: the simultaneously coupled infinite-dimensional inte-
grated image registration and parameter identification problem from image data. We assume a given model
for the underlying physics (e.g., linear elasticity and hyperelasticity), and assume that the observational
data for the inverse problem consist of images of the undeformed and deformed configurations of the body
of interest. We assume that the body is painted with a speckle pattern (speckled) to maximize the informa-
tion about the point wise deformation state via contrast in pixel values (see Figure 2). We then formulate
a simultaneously coupled image registration and heterogeneous material property inverse problem, which
constrains the admissible displacements to obey the governing conservation laws. This formulation thereby
leads to physically consistent reconstruction of both the displacement and heterogeneous parameter fields.
We follow the “optimize-then-discretize” (OTD) formalism, and derive all of our proposed methods for the
continuum limit of the problems of interest in their corresponding function space setting [52, 53]. This allows
us to mitigate the effects of discretization on the performance of the methods in practice.

We consider physical models governing the motion of deforming elastic bodies, formulated as partial dif-
ferential equations (PDEs). Given a physical domain Ω ⊂ Rd (d = 2, 3) and boundary Γ of the (undeformed)
solid body, the PDE model defines the mapping from a spatially varying parameter field m ∈ M and the
traction t ∈ T to the state variable u ∈ U := u0 + V representing the displacement field, where M, T ,
U are the function spaces for parameter, traction, and displacement fields, respectively. A schematic of an
example setup is shown in Figure 2. In particular, M and T are assumed to be Hilbert spaces such as the
Sobolev spaces Hk(Ω) and L2(Γ). The state space U is given as an affine shift of a Hilbert space V by a finite
energy lift of any displacement boundary conditions, u0, where u0 satisfies the desired Dirichlet boundary
conditions and ∥u0∥V <∞. The PDE model can then be written abstractly as

PDE Model: R(u,m, t) = 0, (1)

where the PDE residual, R : U ×M×T → V ′, is a possibly nonlinear combination of differential operators,
and V ′ is the (topological) dual of V. Alternatively, we can formulate the PDE problem in its weak form
using V as the test space,

Find u ∈ U such that r(u,m, t, v) = ⟨R(u,m, t), v⟩V = 0, ∀v ∈ V, (2)

where r : U × M × T × V → R is the weak residual, and ⟨·, ·⟩V denotes the duality pairing between V ′

and V. Note that r(u,m, t, v) is linear with respect to the test function v. We will assume that the PDE
problem is well-posed and admits solution operator u = u(m, t) that is differentiable with respect to the
PDE parameters.

In the simplest case, the observational data is given in the form of two images: I0 and I1, capturing
the undeformed and deformed specimen, respectively, see Figure 2 for a schematic. This case generalizes to
many images in the case of multiple deformation states to better inform the inversion. Mathematically, we
consider images as functions of spatial coordinates that return the grayscale pixel value of the image at a
particular point, where 0 is black and 255 is white. In particular images I0 and I1 are defined over an image
domain ΩI , which is large enough to capture both the undeformed and deformed specimen. Moreover, we
consider the space of images to be I = H1(ΩI) such that they admit at least one spatial derivative.
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Fig. 2. Schematic of the numerical setup for generating the reference and deformed states. The domain, Ω, is speckled. A
traction condition is applied to the right boundary, ΓR and a clamped condition is applied to the left boundary, ΓL.

The objective of the coupled inversion and registration is then to find the parameter field m such that the
predicted displacement yields an image that matches the image of the deformed specimen. This is formulated
using the following minimization problem,

min
m∈M,u∈U

J (u,m; I0, I1) := Φ(u; I0, I1) +R(m) subject to R(u,m, t) = 0,

Here, the image misfit

Φ(u; I0, I1) =
1

2

∫
Ω

|I1(x+ u(x))− I0(x)|2dx, (3)

compares the pixel values of the images, where | · | denotes the magnitude. Simply put, the misfit is the
difference in the two images in function space where the displaced image is ‘pulled-back’ by the displacement
field.

For the elliptic and parabolic PDEs that govern the deformation of solid bodies, the mapping from
material parameter fieldsm to the displacement u tends to be smoothing, i.e., highly oscillatory perturbations
of m do not significantly affect u. Thus, the inversion of full heterogeneous parameter fields is inherently
ill-posed. To overcome this ill-posedness, we additionally introduce regularization on the parameter field,
R(m), to the cost functional J .

It is important to note that, unlike in the case of DIC, where the ill-posedness is in directly identifying
the displacement field based on pixel correlations, the displacement field in our formulation is completely
constrained by the underlying PDE solution, u = u(m, t). Instead, the regularization is prescribed on the
parameter field to overcome the ill-posedness arising from the desire to invert for heterogeneous material
parameters.

2.1. Handling the Ill-posedness of the Inverse Problem

As previously discussed, it is typical for the PDE solution operator to be insensitive to certain directions
(subspaces) in the parameter space. In such settings, observation data alone is not sufficient to identify
the material parameters in these subspaces, and regularization is required to make the inverse problem
well-posed. The choice of regularization R is based on the prior knowledge about the parameter field, and
is tightly related to the choice of a prior distribution on the parameters in Bayesian inference. Thus, the
context should motivate the decision of which regularization to use.

In this work, we consider three choices of regularization terms. In the simplest case, we can consider L2

Tikhonov regularization to penalize the deviation of m from a reference value m̄ ∈ M,

RL2(m) =
γL2

2

∫
Ω

|m(x)− m̄(x)|2 dx. (4)

where γL2 > 0 is a weighting factor. For example, one can take m̄(x) ≡ mnominal, where mnominal is a
nominal value for the material under consideration, maybe obtained from a material database. In addition
to directly regularizing the values of m, another option is to penalize steeper gradients of m to impose a
preference for smooth parameter fields. To this end, H1 Tikhonov regularization uses an L2(Ω) penalization
on the gradient,

RH1(m) =
γH1

2

∫
Ω

∥∇m(x)∥22 dx, (5)
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with weighting γH1 > 0, where ∥ · ∥2 denotes the Euclidean (ℓ2) norm of a vector in Rd. The smoothing
effect introduced by H1 regularization tends to blur sharp edges.

If it is expected a priori that there are sharp edges (i.e., voids, fibers, particles) then total variation (TV)
regularization can be introduced. Unlike H1, TV regularization is defined using a L1(Ω) penalization on the
gradient

RTV (m) = γTV

∫
Ω

∥∇m(x)∥2 dx, (6)

with weighting γTV > 0. Since the L1(Ω) norm is sparsifying, TV regularization tends to result in piecewise
constant parameter fields. However, RTV (m) is not differentiable when ∇m = 0. A common approach to
addressing this issue is by introducing a smoothing parameter, ϵ > 0, to define a smoothed TV regularization
term,

Rϵ
TV (m) = γϵTV

∫
Ω

√
∥∇m(x)∥22 + ϵ dx, (7)

with weighting γϵTV > 0. This smooths the TV functional at zero, making it differentiable and also leads
to a more positive definite Hessian of Rϵ

TV . However, this will tend to produce smooth transitions between
piecewise constant regions, where the sizes of the transition zones increase with ϵ. Reducing ϵ brings the
approximation Rϵ

TV closer to RTV (m), effectively sharpening edges, but also makes the Hessian less positive-
definite.

For the Tikhonov regularization terms, one tunes only the weighting factor (γL2 or γH1) as a hyperpa-
rameter, whereas in the case of smoothed TV regularization, there are two hyperparameters, γTV and ϵ. In
this study, ϵ is systematically reduced to sharpen the edges of the parameter field, until the problem becomes
ill-conditioned again, and the optimization algorithm fails to converge. Typically, one will use a combination
of regularization terms, such as combining L2 with H1 or TV, leading to two or three tunable hyperparame-
ters. A common approach is to use a heuristic, such as the L-curve criterion, to determine the optimal values
of the regularization parameters. Regardless of method, it is important to tune the regularization to result
in a well-posed optimization problem that considers the physical understanding of the problem at hand.

2.2. Inexact Newton-CG Method for the Regularized Inverse Problem

The incorporation of the regularization terms into the inverse problem results in a well-posed optimization
problem in which we solve with a scalable and efficient inexact Newton-CG method. To this end, we opt
for a reduced-space approach, in which the minimization problem (3) is solved by explicitly eliminating the
PDE constraint R(u,m, t) = 0 using the solution operator u = u(m, t). This leads to an unconstrained
minimization problem,

min
m∈M

Ĵ (m) := J (u(m, t); I0, I1) = Φ(u(m, t); I0, I1) +R(m), (8)

since u directly depends on m through the solution of the PDE. To solve (8), we opt for a gradient based
optimization scheme. Notably, gradient descent is not mesh-independent since it is not affine-invariant. In-
stead, we consider Newton’s method for solving (8) since its affine-invariance leads to dimension independent
performance [54]. Starting at an initial guess, m0, mk is updated at each step for k = 1, 2, ..., by

m(k+1) = m(k) + β(k)δm(k). (9)

where β(k) is the step size. The search direction, δm(k), is determined through the Newton step, written
below in variational form,〈

DmmĴ (m(k))δm(k), m̃
〉
M

= −
〈
DmĴ (m(k)), m̃

〉
M

∀m̃ ∈ M, (10)

where DmĴ and DmmĴ are the first and second Gâteaux derivatives (i.e., gradient and Hessian respectively)
of the (reduced-space) cost functional. These derivatives, which are implicitly defined through the PDE
solution operator, can be computed efficiently using the adjoint method; we derive their explicit forms in
section 2.3. However, explicitly constructing the full Hessian is intractable since a pair of linearized forward
and adjoint PDEs must be solved to form each column of the Hessian via Hessian-vector products. The
number of columns scales with the discretization dimension, not the inherent dimension of the problem.
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Instead, we leverage the inexact Newton-CG (INCG) algorithm [55, 56], which is a matrix-free Kyrlov
method for the approximation solution of the Newton system (10), only requiring Hessian actions, thereby
avoiding explicitly forming and inverting the Hessian. Using the gradient norm for the inexact solves,∥∥∥DmĴ (m(k)) +DmmĴ (m(k))δm(k)

∥∥∥
M′

≤ rtol

∥∥∥DmĴ (m(k))
∥∥∥
M′

(11)

allows one to avoid expensive computations far away from an optimum where only descent is needed. As
the iterates proceed the tolerance grows tighter and better Newton iterates are produced. We use the

tolerance, rtol = min

(
0.5,

√
Ĵ (m(k))/Ĵ (m(0))

)
, as this theoretically allows for superlinear convergence in

local regimes [57]. Thus, with the chosen CG termination criterion, inexact Newton-CG ensures that only
few Hessian actions are used to solve for the search direction in the global (pre-asymptotic) regime, where
the descent does not benefit significantly from Hessian information. On the other hand, in the regime of
local convergence, (10) is solved to a finer tolerance, incorporating more accurate curvature information
which classically leads to superlinear convergence when the true Hessian is used. In this work we utilize the
Gauss–Newton Hessian instead due to our assumed smoothness of the image field, so we settle for fast linear
convergence.

2.3. Derivation of the Adjoints and Hessian actions for ∞–IDIC

In this section, we derive the gradient and Hessian actions of the (reduced-space) cost functional that
are required for the INCG algorithm. To compute the gradient of J , we employ a Lagrangian approach by
introducing an adjoint variable, p ∈ V and a Lagrangian functional,

L(u,m, t, p) = Φ(u; I0, I1) +R(m) + r(u,m, t, p). (12)

The m-reduced gradient is formed by eliminating the Karush–Kuhn–Tucker (KKT) conditions associated
with p and m, i.e., we set the first variations of the Lagrangian with respect to p and u to zero, such that
the first derivative of the cost functional with respect to m, DmJ , coincides with ∂mL. For brevity, we will
omit the arguments to L, where it is understood that they are to be evaluated at (u,m, t). The forward
equation, adjoint equation, and gradient equation are thus given by,

r(u,m, t, p̃) = 0 ∀p̃ ∈ V, (13a)

⟨∂ur(u,m, t, p), ũ⟩V = −⟨∂uΦ, ũ⟩V ∀ũ ∈ V, (13b)

⟨DmJ , m̃⟩M = ⟨∂mR(m), m̃⟩M + ⟨∂mr(u,m, t, p), m̃⟩M ∀m̃ ∈ M, (13c)

respectively, where we can write out the misfit’s contribution to the adjoint equation as

⟨∂uΦ, ũ⟩V =

∫
Ω

(I1(x+ u(x))− I0(x))∇I1(x+ u(x)) · ũ(x) dx ∀ũ ∈ V. (14)

The gradient of the cost function can therefore be found by the subsequent process of first solving (13a) for
u, then given u solving (13b) for p, then given u and p forming the variational gradient in (13c). To derive
the Hessian action, we introduce the Hessian meta-Lagrangian,

LH(u,m, t, p, û, m̂, p̂) = ⟨∂uL, û⟩V + ⟨∂mL, m̂⟩M + ⟨∂pL, p̂⟩V . (15)

Analogous to the gradient formation procedure, we set ∂pLH = 0, ∂uLH = 0, such that ⟨DmmJ m̂, m̃⟩M =
⟨∂mLH , m̃⟩M, where DmmJ m̂ is the Hessian acting in a direction m̂ ∈ M. These give rise to the incremental
forward, incremental adjoint, and the Hessian action equations,

⟨∂ur(u,m, t, p̃), û⟩V = −⟨∂mr(u,m, t, p̃), m̂⟩M ∀p̃ ∈ V, (16a)

⟨∂ur(u,m, t, p̂), ũ⟩V = − (⟨∂uuΦû, ũ⟩V + ⟨∂mur(u,m, t, p)m̂, ũ⟩V + ⟨∂uur(u,m, t, p)û, ũ⟩V) ∀ũ ∈ V, (16b)

⟨DmmJ m̂, m̃⟩M = ⟨∂mmR(m)m̂, m̃⟩M + ⟨∂mmr(u,m, t, p̂)m̂, m̃⟩M
+ ⟨∂mr(u,m, t, p̂)m̃, p̂⟩M + ⟨∂umr(u,m, t, p)û, m̃⟩M ∀m̃ ∈ M, (16c)
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respectively.
The incremental forward equation (16a) is solved for p̂, the incremental adjoint problem (16b) is solved

for û, and the variables are combined with u and p to give the Hessian of the cost functional acting in the
direction of m̂ using (16c). Again, we can explicitly write out the misfit contribution to the incremental
adjoint equation as

⟨∂uuΦû, ũ⟩V =

∫
Ω0

(I1(x+ u(x))− I0(x))∇2I1(x+ u(x))û · ũ dx

+

∫
Ω0

(∇I1(x+ u(x)) · û)(∇I1(x+ u(x)) · ũ) dx ∀û, ũ ∈ V.

The second spatial derivative of an image, specifically ∇2I1(x+ u(x)), may not exist given our assumed C1

smoothness. To avoid more restrictive assumptions of C2 smoothness, we employ a Gauss–Newton approxi-
mation of the Hessian [54], in which we drop the (I0(x)− I1(x+u(x)))∇2Ii(x+u(x))û · ũ term, leaving only
the terms involving ∇I1. That is, we take the approximation

⟨∂uuΦû, ũ⟩V ≈
∫
Ω0

(∇I1(x+ u(x)) · û)(∇I1(x+ u(x)) · ũ) dx ∀û, ũ ∈ V. (17)

This approximation is accurate when the data misfit I1(x + u(x)) − I0(x) is small, but since I1 ̸→ I0 due
to the observational noise, the Gauss–Newton Hessian does not converge to the true Hessian. We do not
expect the typical superlinear convergence of inexact Newton methods and instead fast linear convergence.

Remark 2.1. It is possible that the true Hessian can be computed if the second spatial derivative of the
image is well-defined, but this is not the case for the images considered in this work as they are piece-wise
constant speckle patterns where the second derivative is undefined at the edges of the speckles.

2.4. Derivations of the gradient and Hessian action for Regularization Terms

In this section we derive the gradient and Hessian actions of the regularization terms. Beginning with
the L2 Tikohnov regularization, we have the following gradient and Hessian action:

⟨DmRL2(m), m̃⟩M = γL2

∫
Ω

mm̃dx ∀m̃ ∈ M, (18a)

⟨D2
mmRL2(m)m̂, m̃⟩M = γL2

∫
Ω

m̂m̃ dx ∀m̃, m̂ ∈ M. (18b)

For the H1 regularization, we have the following gradient and Hessian action:

⟨DmRH1(m), m̃⟩M = γH1

∫
Ω

∇m · ∇m̃ dx ∀m̃ ∈ M, (19a)

⟨D2
mmRH1(m)m̂, m̃⟩M = γH1

∫
Ω

∇m̂ · ∇m̃ dx ∀m̃, m̂ ∈ M. (19b)

For the TV regularization we have the following gradient and Hessian action, which we refer to as the primal
formulation of TV:

⟨DmRϵ
TV (m), m̃⟩M = γϵTV

∫
Ω

∇m√
∥∇m∥22 + ϵ

· ∇m̃ dx ∀m̃ ∈ M. (20a)

⟨D2
mmRϵ

TV (m)m̂, m̃⟩M = γϵTV

∫
Ω

1√
∥∇m∥22 + ϵ

[(
I − ∇m⊗∇m

∇m∇m+ ϵ

)
∇m̂

]
· m̃ dx ∀m̃, m̂ ∈ M, (20b)

where ∥ · ∥2 denotes the usual Euclidean norm for vectors in Rd. It has been shown that anisotropy in the
(I− ∇m⊗∇m

∇m∇m+ϵ ) term causes convergence issues; as ϵ is reduced the radius of local convergence also is reduced
and the method may not converge globally [58]. Additionally, the ϵ parameter is mesh dependent, so one
must retune the hyperparameter as the mesh is refined. A first attempt to mitigate this is to scale ϵ with
the mesh size [59]. However, this method proved unsuccessful in our experiments and mesh-independence
was not achieved, possibly due to the nonlinear nature of the ∞–IDIC formulation (and nonlinear PDE
used in demonstration). To mitigate the mesh-depenence, we instead employ a primal-dual approach which
empirically leads to a mesh-independent algorithm.
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2.4.1. Primal-Dual TV

The issues with convergence of Newton’s method for the primal Rϵ
TV are due to the highly ill-conditioned

Hessian term (20b). The ill-conditioning of the Hessian is due to taking an additional derivative of the
∇m√

∥∇m∥2
m+ϵ

term in the gradient (20a). In [58], the authors proposed a solution to this problem via an

equivalent primal-dual formulation of the TV-regularized optimization problem. In this formulation an
additional dual variable w = ∇m√

∥∇m∥2
m+ϵ

is introduced leading to the primal-dual interpretation of TV:

Rϵ
TV (m) = γTV sup

w∈W

{∫
Ω

m(x)∇ · w(x)dx : ∥w(x)∥2 ≤ 1 ∀x ∈ Ω

}
, (21)

where W is an appropriately chosen function space for the dual variable. For example when approximating
M by continuous Galerkin finite elements with order r, CGr(Ω) the space of r − 1th order discontinuous
Galerkin finite elemets, DGr(Ω)

d, is a suitable choice for W, [60, 61]. In the primal-dual TV, the first order
optimality condition (13c) for m,

⟨DmJ , m̃⟩M = 0 ∀m̃ ∈ M (22)

can be rewritten as a system for the primal-dual pair (m,w):

γϵTV

∫
Ω

w · ∇m̃ dx+ ⟨∂mr(u,m, t, p), m̃⟩M = 0 ∀m̃ ∈ M, (23a)∫
Ω

(√
∥∇m∥22 + ϵ

)
ww̃dx−

∫
Ω

∇mw̃dx = 0 ∀w̃ ∈ W, (23b)

The subsequent linearization to a Newton system for the pair (m,w) leads to a better-conditioned optimiza-
tion problem and empirically superior convergence properties [58]. At every Newton iteration, we compute
updates for both m and w, as follows:

m(k+1) = m(k) + α(k)
m δm(k),

w(k+1) = w(k) + α(k)
w δw(k).

We first solve for δm(k) via the Newton system (10), where the Hessian vector product is defined as in (16c),
with

⟨∂mmRϵ
TV (m

(k))δm(k), m̃⟩M = γϵTV

∫
Ω

1√
∥∇m(k)∥22 + ϵ

[(
I −A(m(k), w(k))

)
∇m̃

]
· ∇δm(k) dx, (24a)

A(m,w) =
1

2
w ⊗ ∇m√

∥∇m∥22 + ϵ
+

1

2

∇m
∥
√

|∇m∥22 + ϵ
⊗ w. (24b)

Once δm(k) is computed, m(k+1) is found via a line search to determine an appropriate choice of α
(k)
m . Next

δw(k) is found from the following relation:

⟨δw(k), w̃⟩W =

∫
Ω

1√
∥∇m(k+1)∥22 + ϵ

(
I −A(m(k+1), w(k))

)
∇w̃−w(k)w̃+

∇m(k+1)√
∥∇m(k+1)∥22 + ϵ

w̃ dx ∀w̃ ∈ W.

(25)

The dual variable w(k+1) is then updated via a line search for α
(k)
w , which is chosen such that the condition

∥w(x)| 2 ≤ 1 is met for all x ∈ Ω, as in (21). Similar to [58] we observe significantly improved performance
over the primal version of TV. In particular, our choice of ϵ is mesh-independent, and we observe consistent
and improved convergence across all meshes. With the primal version of TV we were only able to observe
convergence on small meshes, after significant hyperparameter tuning to find an appropriate choice of ϵ.

3. Numerical Results

3.1. Introducing the PDEs

We evaluate ∞–IDIC’s efficacy via synthetic data from two PDE models for elastic deformation problems:
linear elasticity and hyperelasticity. The parameter fields are complex, spatially varying examples which
represent materials with voids, stiff particles, and grain structures. We present the PDEs in the following
section, but leave details of the data generation (i.e., image creation and noise corruption) to Appendix A.
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3.1.1. Linear Elasticity

We consider unit square physical domains Ω = (0, 1)2, with spatial coordinates x ∈ Ω. The strong form
of the linear elasticity PDE over Ω is given by

∇ · (σ(u)) = 0 in Ω,

u = 0 on ΓL,

σ(u) · n = t on ΓR,

σ(u) · n = 0 on ΓT ∪ ΓB .

(26)

We prescribe a fixed displacement condition on the left boundary ΓL, a traction t on the right boundary ΓR,
and traction-free boundary conditions on top and bottom boundaries, ΓT and ΓB (see Figure 2). Here, the
stress tensor is given by σ(u) = λ∇ · uI + 2µε(u), where ε(u) = 1

2 (∇u +∇uT ), and λ and µ are the Lamé
parameters. We write the traction in terms of its normal and shear components,

t = tnormale1 + tsheare2. (27)

The Lamé parameters are related to the Young’s modulus, E, and Poisson’s ratio, ν, by

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
. (28)

We fix the Poisson’s ratio as ν = 0.35 and invert for the Young’s modulus, E(x). To prevent the modulus
from becoming negative, we parametrize it using the exponential function, i.e., E(x) = em(x), and invert for
the log-Young’s modulus m. Using the notation H1

L(Ω) = {u ∈ H1(Ω) : u|ΓL
= 0}, the variational form of

the PDE (2) is: find u ∈ H1
L(Ω) such that,

rLE(u,m, t, v) :=

∫
Ω

σ(u,m) : ε(v) dx−
∫
ΓL

t · v ds = 0 ∀v ∈ H1
L(Ω). (29)

3.1.2. Neo-Hookean Hyperelasticity

As a second PDE problem we consider a hyperelastic material model, which is commonly used to model
rubber-like materials, biological tissues, and other materials that undergo large deformations. This problem
setting is of interest for elastography [23, 24]. The stress-strain relationship is nonlinear in nature, making it
a more difficult numerical test case. Here we use a material point description, unlike linear elasticity where
we use spatial points. Let X ∈ Ω be the material point where X is related to the spatial point, x, through the
displacement, u(X) = x−X. In hyperelasticity, the internal forces that develop in the material are derived
from a strain energy function, W = W (X,C(X)), where C(X) = F(X)TF(X) is the right Cauchy–Green
deformation tensor and F(X) = I + ∇u(X) is the deformation gradient. For the neo-Hookean model, the
strain energy function is given by

W (X,C(X)) =
µ(X)

2
(tr(C(X))− 3)− µ(X) lnJ(X) +

λ(X)

2
ln2 J(X), (30)

where µ and λ are the Lamé parameters, tr(C) is the trace of C, and J = det(F ) is the determinant of the
deformation gradient. The strong form of hypelasticity PDE is then given by,

∇ · (F(u)S(u)) = 0 in Ω,

u = 0 on ΓL,

F(u)S(u) · n = t on ΓR,

F(u)S(u) · n = 0 on ΓT ∪ ΓB .

(31)

where S(X) = 2 ∂W
∂C(X) is the second Piola–Kirchhoff stress tensor, and the applied traction t is the same as

in Equation (27).
Similar to linear elasticity, the Young’s modulus defined using the parametrization E(x) = em(x) to

ensure positivity and fix the Poisson’s ratio as ν = 0.35. Thus, the variational form of the hyperelasticity
PDE is: find u ∈ H1

L(Ω) such that for all v ∈ H1
L(Ω),

rHE(u,m, t, v) =

∫
Ω

S(u,m) : ε(v) dx−
∫
ΓR

t · v ds = 0. (32)
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We use the finite element method to solve both PDE problems. In particular, we employ piecewise linear
Lagrangian triangular elements to form finite element spaces Mh ≈ M and Vh ≈ V. For primal-dual total
variation, We discretize the dual variable, w, using 0th order discontinuous Galerkin to form a finite element
space Wh ≈ W. We utilize an N × N mesh, where N is the number of elements per side. We handle all
finite element calculations in FEniCS [62] and use hIPPYlib to assist with the adjoint computations [63].

3.2. Spatially Varying Inversions of Heterogeneous Fields

Parameter 
Field

Displacement 
Field

InferredTrue InferredTrue

M
odulus (m

) 

D
isplacem

ent (u) 

Difference
Parameter Field Displacement Field

Inverted Inverted

Fig. 3. Inverse results for Linear Elasticity for varying features. Each inversion is based on a simple tensile experiment with
∼0.2% strain. 10% and 5% noise were applied to the image brightness and force measurements, respectively. The inverse
problem is solved using the primal-dual total variation formulation (γL2 = 5 × 10−8, γTV = 1 × 10−6) with a mesh size of
100×100, and the speckle correlation length is 0.01. The initial guess was uniformly m(x) = 2. The synthetic images are shown
on the right.

We begin our numerical experiments by presenting three examples of linear elasticity generated with
small strains (∼0.5%) in Figure 3. Even at small strains, the inversions capture the spatial distribution well.
Notably, the inversions tend to prefer piece wise constant features due to the choice of TV regularization,
which is particularly useful when sharp features (i.e., fibers, grains, etc.) are present, as seen in the first two
examples. Additionally, we present inversions for hyperelasticity, which could pose greater difficulty due to
higher deformations (∼3% strain). In Figure 4, we show five inverse problems ranging from small voids and
grain boundaries to cracks. It is suspected that the increase in strain led to improved inversions. Notably,
we successfully find features of varying geometries and sizes, as demonstrated by complex blobs, Voronoi
tessellations, and a thin, branching crack. In the first case, we detected tiny void regions (m(x) = −2) with a
radius 1/50th of the domain length; Existing FEMU studies showed inversions for two features with a radius
1/5th of the domain length [23, 25]. However, in all of our inversions, the modulus values do not perfectly
match, due to the inverse problem’s ill-posedness.
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Fig. 4. Inverse results for Hyperelasticity for varying features. Each inversion is based on a simple tensile experiment with ∼5%
strain. 10% and 5% noise were applied to the image brightness and force measurements, respectively. The inverse problem is
solved using the primal-dual total variation formulation (γL2 = 5 × 10−6, γTV = 7.5 × 10−4) with a mesh size of 100 × 100,
and the speckle correlation length is 0.01.

Ill-posedness likely arises from multiple sources including the non-uniqueness of modulus fields that
produce displacement fields satisfying the image data misfit. As seen in Figure 3, the inverted displacement
fields almost replicate the true displacement fields despite the modulus field not perfectly matching. There
is a non-unique relationship between m and u that satisfies the data, resulting in a non-unique solution
to the inverse problem. This effect may also be influenced by the initial guess (m(x) = 2), which is two
orders of magnitude different from the true solution’s features. The synthetic image and force data were
corrupted with noise (see Appendix A) and noise significantly impacts the inversions due to the problem’s
ill-conditioning. A key aspect of the ill-posedness is the inherent dissipative nature of elasticity due to the
damping of high frequency modes of m by the forward physics [27, 28]. Unaddressed, these high frequency
modes would potentially lead to unstable growth which further necessitates the need for regularization.
While we incorporate regularization to reduce the ill-posedness, this ultimately introduces a modeling bias
into the inversion. For example, in the case of Gaussian random field (Figure 3) with smooth features, the
TV regularization tends to sharpen edges.

3.3. Regularization Mitigates the Ill-Posedness

In this section, we study how the choice of regularization affects the inferred parameter fields. In partic-
ular, we solve the inverse problem using L2, H1 and TV regularizations for three distinct mtrue scenarios: a
void inclusion, a bump function, and a Gaussian random field. The inverted parameter fields are shown in
Figure 5. These results demonstrate that L2 regularization is insufficient and introduces artifacts, despite
considerable tuning efforts for the weighting parameter, yielding noisy and inaccurate inversions incapable
of identifying material features. Although L2 penalizes deviations from a nominal value, and in principle
addresses the ill-posedness of the inverse problem, it does not adequately capture the structure of the ma-
terial fields. In contrast, both H1 and TV regularization successfully identify features, with varying degrees
of smoothing. TV regularization excels in preserving sharp interfaces, as seen in the void inclusion scenario,
while H1 regularization produces smoother inversions without favoring sharp interfaces. Notably, H1 regu-
larization is better suited than TV for the Gaussian random field, highlighting the importance of adapting
regularization based on the nature of the problem. These observations underscore the significance of selecting
an appropriate regularization since the choice determines the preferred modulus field characteristics when
the noisy data lone is insufficient to recover the true modulus.
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Fig. 5. Inverse results for Hyperelasticity for varying regularization. Each inversion is based on a simple tensile experiment
with ∼5% strain. 10% and 5% noise were applied to the image brightness and force measurements, respectively. The inverse
problem is solved using a mesh size of 100× 100 and a speckle correlation length of 0.01.

3.4. Mesh-independent Performance

The resolution of the mesh must be chosen to sufficiently be able to resolve the physics (e.g., feature
size, such as for the thin, branched crack in Figure 4). We show inversions for 40,401, 160,801, and 361,201
parameter values (degrees of freedom) relating to 100× 100, 200× 200 and 300× 300 meshes, respectively.
Previous IDIC and FEMU studies handled parameter fields in low dimensions such as two [6], three [7] and
eight [64] scalar values. Increasing the number of degrees of freedom leads to smaller features being captured.
Additionally, fine mesh resolution is important for representing the image speckle pattern. As we refine the
mesh, the speckle pattern is better represented which leads to a better inversion as seen in Figure 6. The
synthetic images were generated on a 500 × 500 mesh and then corrupted with noise; Since, the ∞–IDIC
was conducted on coarser meshes there is some information loss in the finite element representation of the
images. Refining the mesh is necessary to minimize this effect, but it comes at additional computational
costs.
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Fig. 6. Performance of ∞–IDIC with H1 and TV regularization for the sample problem with varying mesh resolution. Each
inversion is based on a simple tensile experiment with ∼5% strain. 10% and 5% noise were applied to the image brightness and
force measurements, respectively. The speckle correlation length is 0.01.

A key benefit of formulating the problem in infinite dimensions is mesh-independent optimization be-
havior, leading to a scalable inversion algorithm. Refining the mesh only increases the cost per PDE solve
and not the number of optimization iterations. Figure 7 demonstrates the mesh-independent performance
of ∞–IDIC for H1 regularization on the parameter where the mesh increased from 100× 100, 200× 200 to
300× 300. We show the relative cost (cost at each Newton iteration normalized by the initial cost) and the
gradient norm. After 30 iterations, the relative cost plateaus independent of mesh size. The gradient norm
exhibits similar convergence behavior, but the refined mesh leads to more jumps in the gradient values.
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Fig. 7. Mesh-independent performance of ∞–IDIC for H1 regularization on the parameter where the mesh increased from
100× 100, 200× 200 to 300× 300. This is a tensile experiment using a 5× 5 features on hyperelastic medium with ∼5% strain.
10% and 5% noise were applied to the image brightness and force measurements, respectively. The speckle correlation length
is 0.01.

We demonstrate mesh-independent performance using the primal-dual TV formulation in Figure 8. It is
clear from the results that ∞–IDIC performs independently of the mesh size. The relative cost reduction and
normalized gradient norm demonstrate similar convergence behavior among the varying mesh sizes. However,
varying the number of features in mtrue results in different convergence behavior, as the complexity of the
problem increases. With more features, the problem requires more iterations to converge because each
experiment starts from the same initial guess of m(x) = 2, and this guess is further from the true solution
when more features are present. Additionally, the finer mesh better represents the image speckle, an effect
that may be more pronounced for more complex problems with smaller features (e.g., 7×7). This effect may
also be influenced by the regularization weighting. The tuning of the regularization parameter likely depends
on the specific problem, and all examples in Figure 8 use the same regularization weighting. Ultimately, each
experiment converges in a mesh-independent manner leading to a scalable algorithm that can be refined to
represent the image speckle and resolve finer material features.
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Fig. 8. Mesh-independent performance of ∞–IDIC for Hyperelasticity when using the primal-dual total variation formulation
(γL2 = 5× 10−6, γTV = 7.5× 10−4) where the mesh increased from 100× 100, 200× 200 to 300× 300.

Mesh Size Wall Clock Time (mins)
100× 100 2.20
200× 200 7.30
300× 300 35.26

Table 2. Timing results for the three different mesh sizes. ∞–IDIC was run on an M2 Macbook Pro with 16 Gb of memory in
serial.

Increasing the mesh increases the computation time due to the PDE solves being more expensive. Table
2 shows the wall clock time for the three different mesh sizes. While the optimization behavior remains
consistent, the computational cost increases significantly with the mesh size. The cost of the PDE solve and
calculating I(x+u(x)) and ∇I(x+u(x)) are the primary drivers of the computational cost. Notably, Pan et
al. show that common DIC software (Vic-2D) took from 7 to 50 minutes to solve for the displacement field
of a tensile coupon [65]. ∞–IDIC is competitive with these times regardless of the solving a more complex
inverse problem.

3.5. ∞–IDIC Robustness

In this section, we investigate the robustness of ∞–IDIC to noise in the images and error in the force
measurement. Subsequently, we discuss how the speckle size impacts the resolution of inferred features. This
leads us to show how the forcing condition also influences the inversion. To further investigate the nuances
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of ∞–IDIC, we introduce an expected information gain (EIG) heuristic that provides comparison between
inversions. We use this to further investigate the influence of speckle size and magnitude of applied force.

3.5.1. Image Noise and Force Measurement Error

In real-world experiments observational noise and error are inevitable, so we investigate their influence
on the inferred results. Appendix A explains synthetic data generation with noise corruption. We show in
Figure 9 that with image brightness noise, ∞–IDIC infers the correct solution as at 50% brightness noise and
the inversion maintains 20 % accuracy. Previous studies show integrated DIC inverting for two parameters
at 3% noise in the image brightness values begins to show significant error for single experiments, and
requires multiple experiments to achieve the same accuracy [6]. On the other hand, for error in the force
measurement, above 25% error the inversion fails to find the spatial distribution of the features. A notable
advantage of∞-IDIC is its robustness to force measurement errors, which is particularly beneficial in contexts
where measuring forces is challenging. For instance, when characterizing composite microstructure inside a
Scanning Electron Microscope with IDIC, the force is applied outside the image field of view, necessitating an
approximation of the local boundary conditions [10] such that being robust to force measurement is helpful.
Regardless, we suspect that in most settings, the force measurement error is sufficiently less than 25%.
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Fig. 9. Effect of noise on the accuracy of the inferred results for Hyperelasticity where mtrue was a 5 × 5 case. Error in the
force measurement eventually led to the inferred solutions not discovering the features, whereas image brightness noise had
little effect.

3.5.2. Relationship Between Speckle Size and Resolution of Inferred Features

The speckle pattern is used during DIC to provide a contrast for comparison between the reference
and deformed images. There are many methods to generate speckle patterns (e.g., spray paint, airbrush,
stamping, etc.) and it is of interest to understand how the speckle pattern influences the inversion in high
dimensions, particularly when the feature size is on similar length scales to the speckle size. As presented
in the appendix, we generate the synthetic speckle by applying a threshold to a Gaussian random field with
a tunable correlation length [63]. We therefore study the effect of speckle size by considering an inverse
problem for a parameter field consisting of a single void in the domain, and compare the solutions of the
inverse problems for various combinations of speckle and feature sizes.

Figure 10 shows the inverted parameter fields for the void, where the size of the void (feature) is reduced
from L/5 to L/50 (L = 1 is the length of the domain) and the speckle correlations are reduced from 2.5×10−1

to 2.44 × 10−4. Generally, we observe that smaller speckle sizes improve inversion results, allowing us to
recover smaller features in the underlying parameter field. But, surprisingly, even when the speckle size is
larger than the feature it is still discovered. We speculate that the edges of the speckle pattern (where ∇I1
is largest) contain vital information for ∞–IDIC, being the main contribution to the derivative of the misfit
functional (see Equation (14)), such that large speckle sizes can be informative. Yet, we observe that when
the feature size is reduced to L/50, larger speckle sizes fail to detect the void in the parameter field, while
the smallest speckle size can still accurately recover the void.
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Fig. 10. The resolution of inverted features is influenced by the speckle size. ∞–IDIC infers the correct solution even when
the speckle size is sufficiently smaller than the feature size. 10% and 5% noise were applied to the image brightness and force
measurements, respectively. The loading condition is a simple tensile experiment with ∼5% strain.

3.5.3. Varying the Forcing Condition

In addition to the speckle pattern, the load configuration is a necessary component of the experiment.
Figure 11 shows inversion solutions of the 3×3 grid modulus pattern using three different loading conditions;
compression (tnormal = -0.50), tension (tnormal = 0.50), and bending (tshear = -0.25). The errors compared to
the true solution, ∥mtrue−minfer∥/∥mtrue∥, are 0.233, 0.219, and 0.218 for compression, tension and bending,
respectively. We observe that the relative cost and gradient norm reduce more slowly for compression than
the other loading conditions. Bending converges the quickest as shown in Figure 11 and appears to provide
maximum information at the top of the domain where the sample is in tension. This aligns with the
observation that tension is more informative than compression. Section 3.6.1 will consider coupling multiple
experiments in a single inverse problem to further improve the inversion by providing more information.
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Fig. 11. ∞–IDIC infers the correct solution for varying experiment boundary conditions. 10% and 5% noise were applied to
the image brightness and force measurements, respectively. For each of the loading experiments, ∼5% strain was applied. The
inverse problem is solved using the primal-dual total variation formulation (γL2 = 5 × 10−6, γTV = 7.5 × 10−4) with a mesh
size of 100× 100, and the speckle correlation length is 0.01.

3.5.4. An Information Gain Heuristic

We now introduce an expected information gain (EIG) metric from Bayesian optimal experimental design,
as a means of evaluating how well-informed different experimental setups are relative to each other. EIG is
a statistical quantity that measures how much information is gained about a random variable (in our case
m) from the observation of another (possibly correlated) random variable (in our case the observation I1).
Given a means of computing EIG, we can make relative information comparisons by evaluating EIG for
differing experimental setups (e.g., different traction conditions or different speckle patterns). While EIG
formally requires a statistical inference framework for its derivation, in the case of linear inverse problems
with Gaussian priors, its can be computed from a closed form expression [66]. The Gaussian prior plays a
role analogous to the quadratic regularization (e.g., H1(Ω) but not TV) in our presentation, so for this reason
we restrict our attention to H1(Ω) regularization in this section. In the context of linear Bayesian inverse
problems, EIG is computed as follows. First, one computes the maximum a posteriori (MAP) point, which
in this setting coincides with the solution of the deterministic inverse problem m∗. Second, one computes
the generalized eigenpairs {(λi, ψi)|λi ≥ λj∀i < j}∞i=1 at m∗, here written in variational form

⟨DmmΦ(u(m∗, t); I0, I1)ψi, m̃⟩M = λi
〈
C−1ψi, m̃

〉
M ∀m̃ ∈ M, (33)

where C−1 is the self adjoint operator that induces the norm that is used in the regularization. For H1(Ω)
regularization this operator is the Laplace operator C−1 = −γ∆+δIM with homogeneous Neumann boundary
conditions, for appropriate choices of γ, δ. Then EIG, hereby denoted as Ψ is computed from the following
formula

Ψ = log det
(
IM + C1/2DmmΦC1/2

)
=

∞∑
i=1

log(1 + λi) ≈
r∑

i=1

log(1 + λi), . (34)

where r is chosen such that λj ≈ 0 for all j > r.

Remark 3.1. We note that the use of H1(Ω) in the context of infinite-dimensional Bayesian inverse problems
is abusive, as in this case C−1 is not trace class for Ω ⊂ Rd with d > 1; thus there is no meaningful limit
of this problem. However, for a fixed discretization of the problem, this formulation leads to a meaningful
approximation of EIG. For a more detailed discussion of EIG and the Bayesian interpretation of ∞–IDIC
see Appendix B.

In this interpretation of EIG, (34) suggests that the curvature of the Hessian located at the solution of
the deterministic inverse problems indicates information gained in the solution of the optimization problem.
Steeper basins around m∗ indicate a well-informed solution of the inverse problem, while flatter basins
indicate less informed solutions; this makes sense as in the latter case a perturbation of m∗ would lead
to a comparatively small change in Φ. Since we are equipped to compute all of these quantities via their

19



derivations in section 2.3, we propose using this linearized form of EIG as an information gain metric to
compare trade offs in how the relative information gained between different choices of hyperparameter used
in the inverse problem formulation. We note that this EIG metric can be efficiently approximated by the
use of randomized generalized eigenvalue solvers [67, 68], since only the first r eigenpairs are needed as in
(34). These eigenvalue solvers are implemented in hIPPYlib [63].

3.5.5. Information Gain Increases with Refining Speckle

Now that we have defined a heuristic to compare between experiments, we run an experiment where the
mesh, number of features, and regularization are held constant at 100×100, 3×3 and γH1 = 5×10−4, while
the speckle correlation length is refined. Figure 12 demonstrates that the EIG improves until plateauing
around a speckle correlation length of 0.0156. This aligns with the observation in Figure 10 that the inversion
improves with refining speckle size, until the speckle is sufficient for the feature size. Notably, the relative
cost in Figure 12 also decays quicker with increasing speckle size suggesting that less Newton iterations are
required. The relative cost, EIG, and inverted parameter fields are in agreement that refining the speckle
size leads to improved inversions until a certain point where there is a diminishing return.
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Fig. 12. The speckle size of the synthetic images is varied to demonstrate the relationship between the EIG and speckle size.
The number of features is held constant at 3 × 3 while the speckle size is varied. Here, 0% noise is applied in order to not
corrupt the eigenvalues. The loading condition is a simple tensile experiment with 5% strain. An H1 regularization is used.

3.5.6. Information Gain Increases with Larger Forcing

Recall that an important aspect of DIC experiments to consider is the applied forces, as the loading
condition determines the displacement observations. We again consider the 3× 3 grid modulus pattern, but
now we solve the inverse problems corresponding to various tensile loads from tnormal = 0 to tnormal = 1. As
in the EIG analysis for speckle size, we use 0% noise for the synthetic images and adopt an H1 regularization
in the inversion. Notably, often in DIC, large deformations are difficult to handle due to ill-posedness and so a
series of images to take smaller steps [69]. Yet, since IDIC benefits from incorporating the governing equations
of the continuum mechanics we observe that a single pair of images can be used at large deformations (∼
10%) as seen in Figure 13. We plot the resulting EIG computed at the MAP points also in Figure 13. We
observe that as the applied force increases, the EIG increases and ∞–IDIC is able to resolve the modulus field
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better. By increasing the deformation of the speckle pattern, ∞–IDIC is provided with more informative
data.
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Fig. 13. The applied normal force, tnormal of the synthetic images is increased to demonstrate that additional deformation
improves the inversion. The number of features is held constant at 3 × 3 while the speckle size is varied. Here, 0% noise is
applied in order to not corrupt the eigenvalues. The loading condition is a simple tensile experiment with 5% strain. An H1

regularization is used.

3.6. Useful Extensions of ∞–IDIC

We will present two forward-looking aspects of ∞–IDIC. First, we consider incorporating multiple exper-
iments into a single inverse problem. Then, we show that we can discover stress concentrations by capturing
the effects of the spatially-varying material properties.

3.6.1. Learning More Through Multiple Experiments

We showed that increasing the magnitude of the force improved the EIG (see section 3.5.6) and the
inversion solution changed varying the loading configuration (see section 3.5.3). This section demonstrates
the marriage of multiple experiments into a single inverse problem; It has been shown before that using
multiple experiments improved the inversion of five isotropic elastic parameters in an IDIC formulation [7].
To formulate ∞–IDIC with multiple experiments, we update the cost functional for ∞–IDIC to be a sum
over the experiments,

Ĵ (m) :=

 1

Nexp

Nexp∑
i=1

Φ (u(m, ti); I0,i, I1,i)

+R(m), (35)

where Nexp is the number of experiments, (ti)
Nexp

i=1 are the different loading conditions, and (I0,i)
Nexp

i=1 and

(I1,i)
Nexp

i= are the undeformed and deformed images corresponding to each experiment. Similarly, the for-
ward, adjoint, and gradient equations become a sum over the experiments and subsequently the incremental
forward, incremental adjoint, and incremental gradient as well. Including the 1/Nexp ensures that the regu-
larization weighting is consistent with a single experiment.

We first show results for a single tension (tnormal = 0.50) experiment to contrast handling four experiments
simultaneously: tension (tnormal = 0.50), compression (tnormal = -0.50), downwards bending (tshear = -0.10),
and upwards bending (tshear = 0.10). The 3×3 feature example noticeably better recovers the true solution’s
modulus values with the additional experiments. Small features that were not recovered with a single
experiment are improved such as the ears of the Texas Longhorn. Lastly, spurious features are removed
upon with the addition of more experiments. This is especially the case with the Voronoi tessellations. We
find that varying the loading conditions improves the inversion for ∞–IDIC.
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Fig. 14. ∞–IDIC infers the correct solution for multiple experiments. 10% and 5% noise were applied to the image brightness
and force measurements, respectively. For each of the loading experiments, ∼5% strain was applied, albeit tnormal and tnormal

varied. The inverse problem is solved using the primal-dual total variation formulation (γL2 = 5e-6, γTV = 7.5e-4) with a mesh
size of 100× 100, and the speckle correlation length is 0.01.

3.6.2. Post-processing for Modulus-Induced Stress Concentrations

In DIC experiments, it is customary to post-process the displacement field to a strain field using the
Green–Lagrange strain relationship,

ϵ =
1

2

(
∇u+∇uT

)
. (36)

For instance, Ncorr, an open-source DIC software, provides this functionality [70]. The strains are
visualized as spatially varying scalar fields by selecting one direction in the tensor, such as εxx which aligns
with the directional of the normal applied load. We show results of εxx using linear elasticity shown in Figure
15. The strain fields provide insight into loading behavior. Yet, engineering systems are often designed to
stress criteria. In the setting of heterogeneous materials, the stress field is different from the strain field.
We use a common stress criterion for linear elasticity, the von Mises stress which is used to predict yielding
in materials under uniaxial tension. The von Mises stress is a scalar field that represents the stress state of
the material and is convenient for visualization. For linear elasticity, a von Mises stress field, σvm, can be
calculated as

σvm =

√
3

2
s : s (37a)

s = σ − 1

3
tr(σ)I. (37b)

We show post-processing results for linear elasticity only, but similar techniques could be done for the
hyperelasticity case. Figure 15 shows the true and inverted strain and stress fields for the same features
as in Figure 3. The first example involves a 3 × 3 grid of alternating voids stiff regions where the inferred
strain and stress fields capture the general trends successfully. The strain field shows limited deformation
in stiff interfaces and large deformation in the void regions while stress concentrations are observed around
voids, indicating potential high-risk regions for failure. In the Voronoi tessellation, the strain field shows
maximum strain in grains with lower modulus and minimal strain in high modulus regions. The inferred
fields properly identify stress concentrates at grain interfaces, aligning with the true solution. Lastly, with
the isotropic Gaussian random field there are stress concentrations properly identified around high modulus
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regions. ∞–IDIC captures general trends in strain and stress fields even for a single experiment at low strains
(∼0.2%), leading to potential applications in non-destructive failure predictions.

Fig. 15. Strain and stress fields for the true and inferred solutions for linear elasticity. The first row shows the strain fields for
the 3 × 3 grid of alternating voids and stiff regions. The second row shows the strain fields for the Voronoi tessellation. The
third row shows the strain fields for the isotropic Gaussian random field.

4. Conclusion

In summary, we present ∞–IDIC, a scalable and efficient framework for the inference of spatially-varying
heterogeneous materials that parametrize continuum mechanical models. The goal of ∞–IDIC is the char-
acterization of damage, defects, anomalies and inclusions in material specimen through nondestructive eval-
uation methods, without any prior knowledge of their morphology or strength. These effects cannot be
directly observed, but must be reconstructed indirectly through inverse problems. Since heterogeneous ma-
terial fields are formally infinite dimensional, we require (i) rich information in the form of observational
data to faithfully reconstruct the material properties, and (ii) an infinite-dimensional formulation of the
inverse problem. To address the first concern we build on IDIC, which like traditional DIC utilizes images
of material deformation as observational data, but unlike DIC monolithically couples the image registration
to the governing equations of equilibrium to enforce physical consistency. To address the second concern we
formulate a general formulation in a function space setting to allow for the inference of arbitrary material
parameter fields. The main challenges of this approach are due to the mathematical and computational
challenges posed by the infinite-dimensional formulation, namely ill-posedness and high dimensionality; ad-
dressing these challenges is a focus of this work. First, to tackle the inherent ill-posedness we consider various
regularization schemes, namely H1(Ω) and total variation for the inference of smooth and sharp features,
respectively. To address the computational costs associated with the discretized problem, we utilize an cost
efficient and dimension-independent inexact-Newton CG framework for the solution of the regularized inverse
problem.

In the numerical results, we demonstrate that ∞–IDIC can recover spatially varying material proper-
ties with remarkable accuracy and sharpness using examples of linear elasticity and hyperelasticity. We
demonstrate the ability to invert for 40,401, 160,801, and 361,201 parameter values while maintaining mesh-
independent behavior. We conduct numerical experiments to investigate how robust ∞–IDIC is to noise
in the image and force data, variation in speckle sizes, and varying force conditions. We find that refining
the speckle size and increasing the force improves inversions. This leads us to show that coupling multiple
experiments in a single ∞–IDIC inverse problem further improves inversions. Lastly, we demonstrate that
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along with the inversion of the spatially varying features, we can invert for stress concentrations arising from
heterogeneity which may potentially be useful for non-destructive evaluation.

We recognize that there is a need to characterize complex, heterogeneous fields such as welds, composites,
tissues, etc. We believe that ∞–IDIC can be a powerful tool for such challenges due to its ability to invert
for sharp features and its mesh-independent behavior. We hope that this enables researchers to better
characterize complex materials and ultimately build more accurate models. The ∞–IDIC framework can be
extended to other settings such as fluid mechanics where an image registration problem can be coupled with
a PDE model (e.g., using particle image velocimetry observational data). In this work we have focused on
2D PDE problems with simple geometries for the sake of a methodological exposition. Extending ∞–IDIC
to complex geometries, three-dimensional and time-dependent problems which would be a significant step
forward for material characterization, and constitutes future work.
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Appendix A. Details on Numerical Implementation

Fig. A.16. Image brightness noise at 50% added to the synthetically generated images. The noise is added to the images to
simulate the effect of varying lighting conditions or general imaging errors in the experiment.

This section describes the process of generating synthetic data for the inverse problem. The assumption of
a prior agreement between our understanding of the physics and the observed data leads us to commit what
is known as an ”inverse crime.” Each numerical result is derived using the same PDE that is subsequently
utilized to inform the inverse problem. Synthetic data is generated by solving the PDEs for the forward
problem and saving speckled images before and after deformation. The speckled images are then used as
the observational data in the subsequent inverse problem. In an actual experiment, the images would be
captured using a camera, or similar sensor, while the speckled specimen is loaded. The following steps detail
how we synthetically form speckled image data:

1. Mesh construction: Construct a mesh of size 500× 500 where 500 is the number of elements in the
mesh. The mesh is used to approximate Ω0 via linear Lagrangian triangular elements to form finite
element spaces Mh ∈ M and Vh ∈ V. The parameter and state space are 1,002,001 and 502,002
dimensions, respectively.

2. True parameter generation: Generate a true field, mtrue(x), that represents the true material
model. This field is used to generate the Young’s modulus, E(x) = emtrue(x), and the Poisson’s ratio
ν(x) = 0.35. The true field is generated through a handful of strategies geared towards representing
complex material fields.

3. Boundary conditions definition: Define the traction condition, t, on the right boundary, ΓR, by
determining the forces, P , and the Dirichlet boundary condition, u = 0, on the left boundary, ΓL.
The Neumann boundary condition is defined as t = 0 on the top and bottom boundaries, ΓT and ΓB .
Figure 2 illustrates the boundary conditions.

4. Forward PDE solve: Solve the forward PDE for the true material model to obtain the true displace-
ment field, utrue(x), and the true stress field, σtrue(x).
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5. Image generation: Generate a speckled image existing in the discretized parameter space, M by
taking a sample, i, from a bilaplacian prior. The correlation length of the bilaplacian prior, ℓ, regulates
the respective correlation length of the speckles. As the speckles in DIC are black (0) or white (255),
thresholding is applied. This is done by projecting i to a function space, Mh, and transforming for
the image, I(x), using the following equation:

I(x) = 255− 255 tanh(100i(x) + 1). (A.1)

6. Image mapping in deformed states & Brightness Error: Map the simulated speckle to both the
reference and deformed states, thereby generating the reference image (I0) and the deformed image
(I1). A modified version of the FEniCS plotting tool operating in displacement mode is used. Instead
of representing displacement, the color map represents the grayscale speckle values. The displaced
image is corrupted with white noise, i.e., N ∼ N (0, σ2), where sigma is the noise level multiplied by
the maximum pixel value to simulate image brightness error. Notably, in practice, the material domain,
Ω0, is smaller than the image domain, ΩI . To simulate this, the images are saved as .png files with
additional white space around the material domain.

7. Force measurement error simulation: To mimic errors in force measurement data, corrupt the
traction condition. For instance, if the true force value is tnormal = 10, the corrupted value is tnormal =
9.5 given a 5% error in a tensile measurement. The corrupted value is saved to a .txt file for subsequent
use in the inverse problem.

True Field 
Generation

Forward PDE 
Solve

Speckled Image 
Generation

Image Mapping to 
Deformed State

Hyperelasticity
𝑃!"#$%& =1.0
𝑃'()%# = 0
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Fig. A.17. Schematic of the synthetic data generation process.

Appendix B. Bayesian ∞−IDIC and expected information gain

We here present a Bayesian extension of ∞−IDIC, in order to give sufficient background for the expected
information gain (EIG) numerical results presented in 3.5.4. First we assume M to be a separable Hilbert
space, so basis representations are countable. We denote by (M,B(M)), the measurable space with B(M)
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being the Borel σ−algebra generated by open sets in M. Next we let C : M → M be a trace class, self
adjoint linear operator on M, such that

tr(C) =
∞∑
i=1

⟨ψi, Cψi⟩M <∞, C = C∗, (B.1)

where {ψi}∞i=1 is any orthonormal basis for M. The operator C can induce an inner product and thereby a
norm. Regularization schemes that are quadratics of the norm ∥ · ∥2C−1 induce Gaussian measures in infinite
dimensional settings. The associated regularization

RC−1(m) = ∥m−m0∥2C−1 = ∥C−1/2(m− m̄)∥2L2(Ω), (B.2)

play the same role as a prior distribution, µprior = N (m0, C), in the Bayesian setting. Here C−1/2 denotes
the symmetric square root of the operator C−1.

What is left to work towards Bayes is a likelihood measure; towards this end, we assume an additive
Gaussian noise model for the observed images, e.g., where noise ξ ∼ N (0, Cnoise), where Cnoise : I → I is a
self adjoint trace class linear operator. In this case our image misfit takes the following form

Φ(u(m); I0, I1) =
∥∥∥C− 1

2

noise(I1(x+ u(x))− I0(x))
∥∥∥2
L2(Ω)

(B.3)

and leads to the following likelihood

πlike(I1|m) ∝ exp(−Φ(u(m); I0, I1)). (B.4)

Bayes Theorem provides a rigorous framework for statistically inferring m as a posterior distribution,
µI1
post = µpost(m|I1) given the observational data I1 through the lens of the PDE model:

dµI1
post

dµprior
∝ πlike(I1|m). (B.5)

Here
dµ

I1
post

dµprior
denotes the Radon–Nikodym derivative of µI1

post with respect to µprior. Assuming that the

map m 7→ u(m) is µ−a.e. well-defined, locally Lipschitz continuous and sufficiently bounded the Bayesian
inverse problem is well-posed [29, Corollary 4.4]. The expected information gain (EIG) is then defined as the
expectation of the Kullback-Leibler divergence (DKL) over instances of data I1 given the noise distribution:

Ψ = EI1 [DKL(µpost(·|I1)||µprior)] (B.6)

DKL(µpost(m|I1)||µprior(m)) =

∫
M

ln

(
dµI1

post

dµpr

)
µpost(dm). (B.7)

As was discussed in section 3.5.4, in the case that the forward map m 7→ u(m) is linear, EIG admits a closed
form expression related to the following generalized eigenvalue problem, which is computed at the maximum
a posteriori (MAP) point m∗,

m∗ = argmaxm∈Mµpost(m|I1) (B.8a)

⟨DmmΦ(u(m⋆, t); I0, I1)ψi, m̃⟩M = λi
〈
C−1ψi, m̃

〉
M ∀m̃ ∈ M (B.8b)

Ψ =

∞∑
i=1

log(1 + λi). (B.8c)

As noted before m∗ coincides with the deterministic inverse problem. While this closed-form expression
for EIG is only exact for linear inverse problems, it can be utilized as an approximation for nonlinear
problems.
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Appendix B.1. Notes on the prior and the function space limit

In the preceding section we focused on quadratic-norm induced Gaussian measures, so we thereby restrict
our attention to the RL2 and RH1 regularization utilized in the ∞−IDIC for simplicity. We note that there
has been work on formulating infinite-dimensionally consistent TV priors, and the discussion presented here
can be naturally extended to that setting [71, 72].

The L2(Ω) Tikhonov regularization fails to induce an infinite-dimensionally consistent prior as it is not
trace class, since it is induced by the operator IM

tr(IM) =

∞∑
i=1

⟨ψi, ψi⟩M =

∞∑
i=1

1 ≮ ∞. (B.9)

TheH1(Ω) regularization is associated with the operator C−1 = −γ∆+δIM (with homogeneous Neumann
boundary conditions), and is only trace class when Ω ⊂ Rd for d = 1. Therefore, the Bayesian extension
of the RH1 problem that we introduced, does not exist in the function space limit. It does however, still
lead to a meaningful Bayesian extension of an ∞−IDIC problem with a fixed mesh representation as in the
numerical results that we discuss in section 3.5.4.

In general one can consider norms based on the Hk(Ω) semi-norms that do induce meaningful infinite-
dimensional Bayesian inverse problems. These are related to the Matérn covariances that are often used
in infinite-dimensional Bayesian inverse problems. Particularly, we used them when generating the speckle
pattern (see section Appendix A) in addition to generating true modulus fields (i.e., the Gaussian random
field in Figure 3). The differential operator

A = δIM − γ∇ · (Θ∇), (B.10)

can induce a trace class covariance C = A−α (with appropriate boundary conditions), when α > d/2 [73].
In (B.10) δ, γ ∈ R control the marginal variance and correlation length in the random fields drawn from the
associated Gaussian measure, and Θ ∈ Rd×d induces anisotropy in the fields [74]. Consequently, we can take
δ = 0, and Θ = I to recover the Hk(Ω) semi-norms with α = k and see that we require k > 1 for Ω ⊂ R2,
but that k = 2 works for all d > 1. This enforces even more smoothness in the solutions that are favored by
the inverse problems (either Bayesian or the analogous deterministic problem). We do not consider this case
in numerical experiments, but note that it leads to a meaningful infinite-dimensional Bayesian analogue of
the corresponding deterministic ∞−IDIC problem.
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